Highlights from IMW 2021

Outline

- What is epigenetics?
 - DNA methylation
 - Histone modification
 - 3D genomic structure
- Epigenetics in myeloma
- Epigenetic modifiers of special interest
 - MMSET/NSD2
 - PRC2 complex (EZH2, PHF19)

Myeloma disease evolution

Initiation and progression mediated by myeloma cell intrinsic and extrinsic factors

Pawlyn C and Morgan GJ. Nat Rev Cancer 2017;17(9):543-556

Epigenetics

The study of heritable changes in gene expression without changes to the underlying DNA sequence

•Please note again, <u>access can only be provided to fully vaccinated or</u> previously COVID19-infected and recovered participants.

•Please note again, access can only be provided to fully vaccir previously COVID19-infected and recovered participants.

Epigenetics

The study of heritable changes in gene expression without changes to the underlying DNA sequence

Potentially modifiable with targeted therapy

https://www.whatisepigenetics.com/histone-modifications/

DNA methylation

DNA methylation

Gillespie S et al, Nursing Outlook, 2019

Histone modification

Histone modification

demethylases,

phosphatases

methylases,

phosphorylases

Bromodomain, chromodomain, PHD finger, WD40 repeat

Tarakhovsky et al, Nature Immunology, 2010

Chromatin structure

Spielmann et al, Nature Reviews Genetics, 2018

Outline

- What is epigenetics?
 - DNA methylation
 - Histone modification
 - 3D genomic structure
- Epigenetics in myeloma
- Epigenetic modifiers of special interest
 - MMSET/NSD2
 - PRC2 complex (EZH2, PHF19)

DNA methylation levels change as disease progresses

Walker BA et al, Blood, 2011

Histone modification

Upregulation of: FGFR3 (lost in 20% of cases) MMSET/NSD2 – H3K36 methyltransferase

Kaiser MF et al Leukemia 2013

Popovic R et al, *Plos Genetics*, 2014

t(4;14) patients - distinct DNA methylation pattern

Choudhury S et al, Journal of Haematology and Oncology, 2020

SETD2 inhibitor given fast track designation by FDA and now in clinical trials

NCT05121103

Totman J et al, *EHA*, 2021 *Lampe J et al. ACS Medicinal Chemistry Letters* **2021** *12* (10). 1539-1545

EZH2

Margueron and Reinburg. Nature. 2011 Jan 20; 469(7330): 343-349

EZH2 inhibitor Tazemetostat active in lymphoma

EZH2mit

Patients (n=45

Patients (n-49)

EZH2^{WT}

Progressive

disease

Stable disease

Partial response

Progressive

disease

Stable

disease

Partial

response

Histone modification

Morschhauser F et al, Lancet Oncology, 2020

Goldsmith SR et al, Clin Lymph Myel Leuk, 2019

EZH2 inhibition led to upregulation of cell cycle control genes, cell cycle arrest and apoptosis

Pawlyn C et al, Blood Cancer Journal. 2017

Increased H3K27me3

Sneeringer CJ et al, PNAS. 2010

Summary

- Epigenetics refers to the structure and packaging of DNA within a cell which can alter how the genetic code is interpreted.
- Epigenetic modifications regulate the process of normal B-cell development and plasma cell differentiation and several epigenetic changes are implicated in myeloma pathogenesis.

- Key epigenetic factors that may be possible targets in myeloma include IDH2, DNMT3A/B, MMSET (WHSC1/NSD2), SETD2 and the PRC2 complex (EZH2/PHF19). (but not only these!)
- Targeting biomarkers that are both prognostic and predictive is likely to improve outcomes for patients with high-risk myeloma fastest.

If they ask you anything you don't know, just say it's due to epigenetics.